Ageing adversely affects the migration and function of marginal zone B cells
نویسندگان
چکیده
Marginal zone (MZ) B cells are positioned within the spleen to capture blood-borne antigen and immune complexes and deliver them to follicular dendritic cells in the B-cell follicles. We show that within the spleens of aged mice antigen capture by MZ B cells, and their ability to shuttle between the follicle and MZ, were impaired. The ability of aged MZ B cells to migrate towards the MZ chemoattractant sphingosine-1-phosphate was increased, suggesting that aged MZ B cells had a greater propensity to be retained within the MZ. An extrinsic impairment in aged B-cell migration towards the MZ was demonstrated using bone marrow chimeras. The follicular shuttling of MZ B cells derived from either young or aged bone marrow was similarly reduced in aged recipient spleens, showing that ageing effects on splenic stromal cells were responsible for the impaired follicular shuttling of MZ B cells. MZ B cells rapidly mount T-cell-independent (TI) antibody-responses to microbial polysaccharide antigen. In aged mice the ability to produce immunoglobulins in response to the TI type 1 antigen TNP-LPS was impaired. These ageing-related changes to the MZ and MZ B cells have implications for the clearance of blood-borne pathogens. Indeed elderly people have increased susceptibility to Streptococcus pneumoniae, a TI antigen, and decreased responses to vaccination. A thorough analysis of the mechanisms that underpin the ageing-related decline in the status of the MZ and MZ B cells will help the design of novel treatments to improve immunity in the elderly.
منابع مشابه
The Significance of B-cell Subsets in Patients with Unclassified Hypogammaglobulinemia and Association with Intravenous Immunoglobulin Replacement Requirement
Background: Patients with unclassified hypogammaglobulinemia (UCH) constitute a diagnostic and therapeutic dilemma, because information concerning the clinical and immunological characteristics of these patients is insufficient. Objective: To evaluate B-cell subsets in cases with UCH and common variable immunodeficiency (CVID) and their association with treatment requirement in UCH patients. Me...
متن کاملبیان آنزیم نیتریک اکسید سینتاز(NOS) در طی تکامل جنینی وزیکول بینایی موش صحرایی
NO is a free radical that regulates a variety of developmental modulation processes. NO is synthesized by NOS and it acts as a neurotransmitter, neuromodulator or second messenger molecule in the central nervous system. Since NO production may be different before or after birth, the expression of neuronal nitric oxide synthase was examined and analysized during the development of rat optic ...
متن کاملO15: Using Stromal Cell-Derived Factor-I as Bio Active Motif in A Novel Self-Assembly Peptide Nanofiber Scaffold: an Approach to Improve Cell Therapy in Brain Injury
Traumatic brain injury (TBI) is one of the main causes of mortality and morbidity worldwide. Despite extensive investigations over the past few decades, no effective therapies exist to improve the brain function in patients with TBI. Neural tissue engineering is an attractive therapeutic approach to restore the brain structure and function of damaged tissue. Bioactive motif of Stromal cell-deri...
متن کاملS1P Signalling Differentially Affects Migration of Peritoneal B Cell Populations In Vitro and Influences the Production of Intestinal IgA In Vivo
Introduction: Sphingosine-1-phosphate (S1P) regulates the migration of follicular B cells (B2 cells) and directs the positioning of Marginal zone B cells (MZ B cells) within the spleen. The function of S1P signalling in the third B cell lineage, B1 B cells, mainly present in the pleural and peritoneal cavity, has not yet been determined. Methods: S1P receptor expression was analysed in peritone...
متن کاملG12/G13 family G proteins regulate marginal zone B cell maturation, migration, and polarization.
G protein-coupled receptors play an important role in the regulation of lymphocyte functions such as migration, adhesion, proliferation, and differentiation. Although the role of G(i) family G proteins has been intensively studied, no in vivo data exist with respect to G12/G13 family G proteins. We show in this study that mice that lack the G protein alpha-subunits G alpha12 and G alpha13 selec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 151 شماره
صفحات -
تاریخ انتشار 2017